Темы | Предыдущий пункт | Следующий пункт | Литература | |
|
|
Лекция 3.1.
Предел. Непрерывность функции. |
|
|
3.1.7. Типы неопределенностей и способы их раскрытия |
Часто при вычислении пределов какой-либо функции, непосредственное применение теорем о пределах не приводит к желаемой цели. Так, например, нельзя применять теорему о пределе дроби, если ее знаменатель стремится к нулю. Поэтому часто прежде, чем применять эти теоремы, необходимо тождественно преобразовать функцию, предел которой мы ищем. Условные выражения характеризуют типы неопределенностей и применяются для обозначения переменных величин, при вычислении предела которых нельзя сразу применять общие свойства пределов. Рассмотрим некоторые приемы раскрытия неопределенностей. I. Неопределенность .
Примеры 1. 2. 3. 4.
II. Неопределенность
Примеры
1. 2. При вычислении пределов числитель и знаменатель дроби разделили на x в старшей степени.
Следующие виды неопределенностей с помощью алгебраических преобразований функции, стоящей под знаком предела, сводят к одному из рассмотренных выше случаев или . III. Неопределенность .
Пример IV. Неопределенность
Пример ы1. 2.
|
|