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THERMOTROPIC GELATION IN WET SPINNING OF FIBRES FROM 

POLYMER SOLUTIONS 

A. L. Kalabin* and E. A. Pakshver** 

A mathematical analytical model of thermotropic gelation in heat exchange of a jet of 

polymer solution in a spinning bath was plotted by considering the phase equilibrium 

diagram of the polymer-solvent-precipitator system and the heat transfer process. The 

law of the change in gel layer thickness in time was determined and the duration of 

total thermotropic gelation was estimated. It was shown that the qualitative behavior 

of the functions of the gel layer thickness versus time is close to a unit step function, the 

duration of total gelation for the thermotropic process is approximately 0.1 sec. and 

the corresponding value of the Fourier number. Fog~2. 

More than one-third of the chemical fibres manufactured in the world - cellulose, 

polyacrylonitrile, aramid, polyvinyl chloride, etc. - are now manufactured by wet spinning from 

polymer solutions. All of these technologies have a common mechanism of fibre formation. 

Beginning with S. P. Papkov's studies [1], the gelation process in spinning has been considered with 

respect to the phase state of the polymer solutions. The kinetics of fibre formation (gelation) was 

investigated experimentally in [2], and there are also studies on modeling this process [2-6] based 

on its diffusion nature. 

The growth rate of the gel coating in time and the duration of total gelation in a small jet of 

spinning solution are very important features in wet spinning technology. Our previously proposed 

[7] model for describing gelation in "wet" spinning of chemical fibres from polymer solutions differs 

from the existing models [2-6] due to the possibility of calculating the gelation kinetics using the 

phase diagram. 

The phase transition in polymer systems can be caused by not only a change in the composition 

of the solvent (addition of a precipitator) but also by a change in the temperature or application of a 

mechanical field. The kinetics of attaining the condition of phase equilibrium to a significant 

degree determines the structure and physicomechanical properties of the gel. The gel phase, in 

turn, is the primary structure of the fibre which greatly determines its properties. The further 

investigation of gelation from polymer solution is pressing. The formation of a gel in thermotropic 



conditions [8], where fibre formation takes place due to heat exchange alone without diffusion, is 

described in recent publications on gelation. 

Thermotropic gelation is examined in the present study. 

The current gel layer thickness can be determined from the transcendental equation in [7] 

C[R(r),t]=Ccr[T(r,t)],                                          (1) 

where C[r,t] is the concentration of precipitator in the polymer solution jet (r is a coordinate along 

the radius of the jet; t is the time); Ccr is the concentration of precipitator at the time of the phase 

transition at temperature T; the value of C is found from the phase diagram of the polymer-solvent-

precipitator system. 

Equation (1) is solved relative to R = R(t) - the coordinates of the gelation front. The current 

gel layer thickness Rg (t) is determined as the difference between the radius of the fibre R0 and the 

coordinate of the gelation front Rg(t) = R0 - R(t). This relation and Eq. (1) can be used to find the gel 

layer thickness as a function of time Rg(t). 

The calculation of Rg(t) for a nonlinear model of gelation is reported in [7]. An approximate 

linear model of the process, expressed in algebraic equations, will be examined for the analysis of 

the change in the size of the gelation zone in time Rg(t) and for the estimations.  It is hypothesized 

that the qualitative shape of Rg(t) will be preserved when the nonlinear model is 
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Fig. 1. Reduced fibre temperature θ(l) and relative error of calculation ξ(2) calculated with Eq. (4) for z 

= 0.5 vs. Fourier number. 

simplified. This assumption is based on the fact that the nonlinearity, which allows calculating 

the gelation kinetics from the point of view of a heat-exchange process, only results in a 

quantitative change in the thermal diffusivity and heat exchange coefficient in time and space, 



i.e., it makes it possible to consider the difference of these coefficients in solution and gel with 

a dynamic change in the gel film thickness. 

We will make the following assumptions in the subsequent examination: 

1)  spinning is thermotropic, i.e., the initial concentration of precipitator in the polymer 

solution is equal to the concentration of precipitator in the spinning bath, so that C[R,t] = const; 

2)  we will use one average value of the thermal diffusivity in the polymer solution and 

gel, and it is constant; 

3)  the fibre radius R0 is constant; 

4)  heal exchange on the surface of the fibre corresponds to Newton's law, i.e., to 

boundary conditions of the third kind [2]. 

When these conditions are satisfied, the relation is simplified: 

 

T[R,t]=Tcr=const                                                             (2) 

where Tcr is the temperature of the system at the time of the phase transition for defined 

concentrations of precipitator and polymer. 

On this basis, the model from [7] can be transformed into a linear heat equation for an 

unbounded cylinder. The dimensionless temperature distribution θ over the radius of the fibre 

as a function of dimensionless time Fo (Fourier number) is the known solution of the linear 

transfer problem [9] and is 

∑
∞

=

−=−−=
1

2
00 ),exp()()/(]),([),(

n
nnngg FozJATTTtrTFoz µµθ                           (3) 

where z = r/R0; Fo = at/R2
0; a is the thermal diffusivity; Tg is the ambient temperature; T0 is 

the initial temperature of the solution; An = 2Bi/[J0(µn)(µn
2 + Bi2)]; J0 is a zero-order Bessel 

function of the first kind; µn is the solution of the characteristic equation; Bi = aR0/λ is the Biot 

number; the dimensionless quantity θcr corresponds to Tcr; is the heat transfer coefficient; λ is 

the thermal conductivity coefficient. 

Substituting Eq. (3) for the center of the cylinder with r=0  in Eq. (2), we obtain an 

equation whose solution is the gel layer thickness as a function of time Rg(t). The gelation 

process can be considered complete when the temperature at a point the maximum distance 

from the surface of the fibre (its center) attains a value sufficient for the phase transition of 

the polymer solution into a gel, i.e., T(0,t) = Tcr   is satisfied. 
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Fig. 2. Dimensionless gel thickness zg vs. dimensionless time - Fourier number for different values of 

θcr: 0)0; l)0.1;2)0.2;3)0.3;4) 0.4; 5)0.5; 6) 0.6; 7) 0.7; 8) 0.8. 

Fig. 3. Dimensionless gel thickness zg vs. Fourier number for θcr = 0.2. Curve 1 was obtained from the 

solution of Eq. (2); curve 2 was calculated with Eq. (5). 

Use of the linear model does not qualitatively simplify Eq. (2) - it is still transcendental. 

We will use the existing method of analysis of solutions of a parabolic transfer equation from 

[10] based on use of an approximate solution for small and large times for the given process 

for transforming it into an algebraic equation. The following approximate solution for an 

infinite cylinder with boundary conditions of the third kind was obtained: 

θ(z,Fo)=[1-(z)n]exp[-B(Fo-Fo1)],                                      (4) 

where constants m, Fo1, and n are determined from the equations 
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The following quantities are then determined 

 

A=(1+n/Bi)-1, 

 

B=2(1+m/Bi)[1/(m+2)+1/Bi]-1. 

 

This method of investigation assumes separation of the duration of the process into two parts. The 

value of the Fourier number Fo1 corresponding to the lime the temperature in the center of the 

cylinder begins to change r = 0, i.e., at a point the maximum distance from the surface of the fibre, 

is the dividing point. In the first half-open interval, for Fo < Fo1, use of the expression for the 

calculation which is accurate for a semi-infinite medium is proposed in [10]. Equation (4) is the 

refined value of the first term of infinite series (3). Quantities A1 and µ1 in the first term of this 

series are included in the system. The data 
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Fig. 4. Fourier number corresponding to total gelation Fo g vs. dimensionless critical temperature θr  . 

from calculations with Eq. (4) were compared with the accurate data calculated with Eq. (3) to 

evaluate the adequacy of Eq. (4); the results are shown in Fig. 1. We obtain from Eq. (4) 

the expressions for the dimensionless polymer gel thickness zg = Rg(t)/R0 in explicit form 

as a function of time for a defined critical temperature 



zx={[1-θcrexp(B(Fo-Fo1))]}1/n.                                                  (5) 

We also obtain from Eq. (4) the equation for estimating the duration of total gelation in 

dimensionless form: 

Fog=Fo1+ln[(1-A)/θcr]/B.                                                    (6) 

We will represent Eq. (6) as the sum 

Fog=Fo1+Focr,                                                               (7) 

where Fo1 is the time required for the temperature in the center of the jet with r = 0 to change 

by approximately 1 % relative to the initial temperature; Focr is the duration of the change in 

the temperature from the initial temperature to the temperature required for gelation for the 

given concentration. 

This approach will allow distinguishing two stages in the gelation process - with 

duration Fo1 and Focr. 

Equation (6), presented in dimensionless form, establishes the dependence of the 

duration of total gelation tg on the process parameters of the temperature of the medium 

(spinning bath), initial temperature of the polymer solution, phase diagram of the system, fibre 

radius, and thermal diffusivity 

tg = R2 {F01 + ln[(1-A)(T0-Tg)/(Tcr -Tg)]/ B} / a.                              (8) 

Converting the description of thermotropic gelation to dimensionless form based on the 

theory of similarity due to establishment of internal links between the variables reduces the 

number of parameters. Instead of quantities a, λ, α, R, T0, Tcr, and Tc, the Biot number and 

reduced temperature θcr are used. The number of arguments in the functions is reduced from 

7 to 2 in this way. 

To test the serviceability of the proposed estimation of the duration of total gelation, 

numerical modeling was conducted with Eqs. (4)-(8). The spinning conditions were selected in 

the polyacrylonitrile (PAN)-dimethylformamide (DMF)-water system, for initial 

concentrations of the PAN-DMF-water solution of 20:78.4:1.6% and DMF-water spinning 

bath of 98:2% were selected. Consider the solution of Eq. (2) for these spinning conditions in 

this system for a concentration of water of C = 2% according to [11]. In these conditions, the 

spinning bath at normal temperature cannot coagulate the spinning solution, and only shifts 

the phase equilibrium curve (in temperature-concentration of polymer coordinates) to the 

region of higher temperatures. This system can form a gel while cooling. The following 



values of the process parameters were used: R() = 0.05 mm, T0 = 50°C; Tg = -10°C. The 

thermal conductivity coefficient and thermal diffusivity required for solving the heat problem 

for PAN-DMF solution were taken from [12]  without consideration of their 

temperature dependence: 

λ = 0.2 W/(mK), specific heat capacity G = 2100 J/(kgK) for a density of ρ= 950 kg/m3. We 

will hypothesize that the thermal diffusivity of the fibre, averaged for temperature and time, is 

equal to a = λ/Gρ = 10-7 m2/sec. Due to the lack of data, the thermophysical properties of the 

gel were assumed to be the same as for the solution. The value of α = 103 W/(m2K) was 

determined with the data in [2], then Bi = 0.25. In calculating the values for substitution in 

Eq. (4), we find that n = 1.081, m = 9.86-10-3; Fo1 =0.126. 

The dimensionless thickness of the solidified polymer (gel) as a function of time 

zg(Fo) is shown in Fig. 2. It was obtained by solving Eq. (2) using Eq. (3). This curve has a 

shape close to a unit step function. The numerical estimation of the value of tg =0.1 was 

calculated for θcr =0.155 [ 1 1 ]  for the PAN-DMF-water system. 

To check Eq. (5), the calculated curves of the dimensionless gel thickness zg as a 

function of time Fo are compared in Fig. 3. Curve 1 was obtained from Eqs. (2) and (3) and 

curve 2 was obtained with Eq. (5) for θcr =0.2. The following additional conditions were 

satisfied in the calculation: first, if zg> 1 or zg < 0, then zg = 0; second, for y = 1 – θcr 

exp[B(Fo –Fo1)], if y > 1, then zg = 0 and if y < 0, zg = 1. These conditions are determined 

with the physical meaning of dimensionless gel thickness zg,, which is only established in the 

interval from 0 to 1. A comparison of curves I and 2 indicates the satisfactory performance of 

Eq. (5). 

The calculations with Eq. (6) are shown in Fig. 4. The curve of the Fourier number Fog, 

whose values correspond to total gelation, as a function of the critical temperature θcr, 

determined from the phase diagram, was obtained. The curves obtained from the solution of 

Eqs. (2) and (3) and calculated with Eq. (5) are almost the same, which confirms their 

efficiency. Algebraic equation (5) allows calculating the increase in the gel thickness in time 

much more simply than by solving the transcendental system of Eqs. (2) and (3). 

A comparison of the curves of the thickness of the solidified polymer as a function of 

time obtained for isothermal [13] and thermotropic fibre formation showed that they have a 

very different qualitative shape. 
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